the summations indicate sumnming over both species,
R, is the universal gas constant, the mole fraction .X
is related to the mass fraction by m,. X, = mY, where
me i the molecular weight of pure species a and the
mixture molecular weight is m = X,m,, + Xpymp. Fur-
thermore, the molar volume v is related to the density
by v = m/p. The components of the Peng-Robinson
parameters are provided by an appropriate set of mix-
ing rules which vary for different state equations and
may have variations even for the same state equation.
In the present model we follow the recommendations of
Harstad et. al. [9].

In order to ensure self-consistency, all of the ther-
modynamic properties of the flow should be calculated
from the same EQOS. For the present fluid dynamics
simulations the properties of interest are the molar en-
thalpy (h), the constant pressure molar heat capacity
(Cp) and the speed of sound (a,). Each of these prop-
erties can be obtained through various derivatives and
functions of the Gibbs energy. Finally, for real fluids

the speed of sound
1
a=,/—,
PKs

is given in terms of the isentropic compressibility
Ky = KT — vTaﬁ/C’ s

which is related to the expansivity (¢, ) and the isother-
mal compressibility (k) calculated from the state
equation:

o (9p/0T)x
v v(8p/Bv)T x '

-1
T~ Y@p/v)rx = .

Heat and Mass Transport

For a general fluid the diffusional fluxes for heat and
mass transfer are functions of all thermodynamic vari-
ables. An assumption of linear dependencies is gen-
erally made (10} in which case the Onsager reciprocal
relations define certain relationships between the vari-
ous possible gradient multipliers. These relations can
in fact be shown to be a consequence of time reversal
invariance of the governing equations. The form of the
diffusional fluxes adopted here is presented in a some-
what non-traditional form:

g 1K =~ [/\}K'aa% +arxk BT (-7;;"':7:) \7,'] ,
apkYnYn pD 6T }
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where ¢; r« is the Irwing-Kirkwood (IK) form of the

heat fAux, /\’, i and a; g are the associated thermal con-
ductivity and thermal diffusion factor (similar expres-
sions exist for the Bearman-Kirkwood (BK) form of the

g=-|7+

Z( =pD [QD

|

heat Hux), and D is the binary diffusion coefficient. [t
can be shown that for a general fluid, a thermal con-
ductivity A\ may be detined by:

/\/,K = A+ X, X g arxkR.pD/m,

such that limp_.o N = A1 where Mg is the kinetically
defined thermal conductivity. Although, relatively little
information exists regarding the magnitudes or specific
functional form of the two thermal diffusion factors oy y
and agg, they are related through:

Ie] = +_—1_(mhmn) iﬁ—_’."_”l
IK =gy BT ™ e )

These parameters represent the cross diffusional (Soret
and Dufour) coefficients and are properties of the par-
ticular species pairs under consideration. The partial
molar volume v , = 8v/8X, and the partial molar en-
thalpy h , = 0h/8X, are calculated from the equation
of state and must obey the relations v = X v, + Xnv
and h = Xph , + Xph . The mass diffusion factor ap
is a thermodynamic function given by:

dln(p,)
X,

ap =1+ X,

where ¢, are the fugacity coefficients which are related
to the Gibbs energy and it is noteworthy that ap is in-
dependent of the species chosen in the evaluation. The
formulation is now closed with the exception of specify-
ing g, A, D and arx (or apk) and also the molar refer-
ence enthalpy of the mixture, A® which is the enthalpy
reference state chosen here to be at p° = 1bar (note that
the reference heat capacity is given by C’g = gh%/aT).

Diffusion Coefficients and Reference Enthalpy

In the context of a DNS simulation we are not in-
terested in exactly matching the true diffusion coef-
ficients along with their thermodynamic dependencies
since the resulting Reynolds numbers would be far too
large to resolve with realistic length scales. Even in
the case of an arbitrarily small domain the Schmidt
number for the liquid-like fluid heptane is too large
to resolve the species fields for interesting Reynolds
numbers. We therefore limit the range of thermo-
dynamic state space which will be considered to the
range 600K < T < 1100K, 40atm < P < 80atm and
0 € Y, < 1. This particular region is chosen for two pri-
mary reasons: (1) The Peng-Robinson EOS was found
to be highly accurate within this region when compared
to a more accurate model; the relative error is in no case
greater than approximately 1% for both the pressure
and enthalpy predictions (this error can be larger than
25% at p = 60atm and T = 350K). (2) The viscosity is
predominantly a function of temperature alone and the
non-dimensional Schmidt (Sc) and Prandtl (Pr) num-
bers are found to be predominantly functions of the



mass fraction. This leads to the relatively simplified
diffusion coefficients:

T 0.7
=g (m) ;T in Kelvins,
n

. = _uCp/m Sc
" papD

= 1.5=V,. Pr= A 2exp(-3Yn/2)’
where pp is a reference viscosity and the reference
temperatures T} and T, correspond to the free stream
temperatures for mixing layer simulations. These re-
lations give qualitatively correct trends such that the
Schmidt number is greater than and less than unity
for the proper mass fractions; however, the maximum
value i3 1.5 rather than 2 as observed in the more com-
plete model: For subcritical conditions this allowed us
to consider Reynolds numbers sufficiently large to cap-
ture the transition to turbulence [14]; however, here,
due to the density stratification, transition to turbu-
lence is not obtained for Reynolds numbers of the same
magnitude (see below).

The thermal diffusion factors are poorly under-
stood, particularly at high pressure. For low pressures
some theory exists which suggest that agg is nearly
independent of the mass fraction (though it can gen-
erally be a function of T'). Here we choose a value of
arg = 0.1 as a baseline parameter (see [7]) while not-
ing that agx is the parameter that corresponds to the
kinetic limit in the limit p — 0. Note also that the prod-
uct agx XX, is the ‘thermal diffusion ratio’ which is
essentially the ratio of Soret to Fickian diffusion effects.
Finally, our comparisons with the more accurate state
model show that the mixture reference enthalpy

R® = Y, hO + ViR,

is well fit using

RO KO
- = 656.72 (T1.071) , ~h 27 877 (T1.6414)
My mp

in MJ/kg units.

The set of equations described above is closed;
however, because the most convenient choice of primi-
tive variables for compressible flow simulations are the
density, momentum and energy, the above state equa-
tion must be solved iteratively to get both the temper-
ature and pressure simultaneously. In order to avoid
costly iterations a highly accurate fit was obtained for
the specific internal energy of the mixture (e;) over the
entire state space of interest which is explicit in the
temperature:

T= [(TL)” ; (e‘ —ec ) (@) - (TL)”}]W,

ey — €L

where
=1.14 + 0.667Y,2576,

p—
er =e + [—EL—} (e2 —e1),
Pu — PL

P —pPL
vy ey + {/)U — PL} (("g 83),
and the upper (subscript U) and lower (subscript L)
bounds are p; =3, py; = 248, T, =600 and Ty = 1100
with density in Ag/m’® and temperature in K. Fi-
nally, third order polynomial fits were obtained for the
four remaining internal energy functions e;(Yx; T, p; ),
e2(Ya: Te,py), ea(Yai Ty, pr) and eq(Ya; Ty, py) as

ex = Eo + E\Ya + E2Y? + E3Y3; k=123 4;

where the coefficients are provided in Table 2. This
particular fit also achieves better than 1% maximum
relative error when compared to the Peng-Robinson in-
ternal energy (e = h — pv).

Configuration

The basic configuration is described in detail in [8];
however, here there is only a one phase flow where the
lower stream (subscript 2) is heptane and the upper
stream (subscript 1) is nitrogen. The initial velocity
profile and the forcing is also similar to [8]. The refer-
ence viscosity is calculated from a specified value of the
flow Reynolds number

- JAY (PU)O Su,0
HRr '

where the initial mean momentum difference is
A(pU)g = pyU1—poU2 and the free stream densities are
calculated from a specified constant inijtial low pressure
(po), composition and free stream temperature (7} and
T3). The free stream velocities are based on a specified
convective Mach number (M.) which is modified here
for real gases

Reo
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where the compressibility Z = p/(pTR,/m) indicates
the deviation from ideal gas behavior.

Results

The parametric study (see conditions on Table 3) first
addresses the behavior of two-dimensional (2D) shear
layers in order to explore the effect of the supercritical
conditions and to determine the influence of the lack
of information regarding the value of the thermal dif-
fusion factors on mixing layer entrainment. The three-
dimensional (3D) simulation is pretransitional, and its
results illustrate the differences between the evolution
of the mixing layer at sub- and supercritical conditions.

In many ways, supercritical shear layers can be re-
garded as one example of stratified mixing layers, how-
ever, in contrast to most numerically studied stratified
layers (11}, {12] and {13}, the stratification is not in-
duced by gravity and thus it is uncoupled from the



general concepts associated with the Richardson (mea-
sures buoyancy by vertical shear) and Froude (measures
inertial forces by buoyancy) numbers which dominate
discussions about stratified mixing layers. For those
stratified layers, work must be done in the presence
of gravity to entrain the fluid, and therefore the en-
ergy thus extracted from the flow is no longer avail-
able for entrainment. The result is a reduced growth
rate after the formation of the primary rollers (spanwise
vorticity), a delayed pairing (which may even be sup-
pressed because the amount of kinetic energy that can
be extracted from the free stream flow to overcome the
buoyancy may be insufficient) and an increased number
of ribs (streamwise vorticity) formed due to the addi-
tional instabilities locally created during roll-up of the
spanwise structures. Not only the number of ribs in-
creases, but they form earlier and their size is smaller;
the combined effect is that less fluid is able to cross the
opposite side of the layer resulting in the mixing be-
ing entrainment-limited. For 3D shear layers, the loss
of available energy for entrainment results in less de-
veloped ‘mushroom’ structures in the spanwise cross-
sectional planes, and less energetic small scale struc-
tures once the layer becomes transitional. The present
results feature some of the aspects of gravitationally-
stratified mixing layers, in particular the difficulty to
attain the transitional regime for the same Rep, but
other aspects are different owing to the specifics of the
transport matrix and equations of state of supercritical
fluids.

Figure 1 illustrates the averaged (<> means z;-
averaged) compressibility factor for the 2D shear layers
at the end of the simulation (tAU/6,,0 = 100) for
initial conditions relevant to practical applications: the
initial temperature of the fuel (here heptane) is ~ 600
K, that of nitrogen in 1000 K, and the fuel is injected
close to maximum compression in Diesel engines (thus
the choice of pg = 6 MPa). The final value of tAUy /b, 0
was chosen based upon the observation of completed
two pairings by tAUp/b6.,,0 = 100. The results show
departures from both the ideal gas and the liquid/ideal-
gas mixing layers since Z = 1 for anideal gasand Z <« 1
for liquids; the value of Z = 0.4 is more akin to that
of a dense gas. As the initial temperature of heptane is
raised, the value of Z approaches that of an ideal gas.

The temporal variation of the nondimensional mo-
mentum thickness 6, /8.0 is shown in Fig. 2 for all
2D layers, portraying the layer growth. As expected,
8m/bw,0 is similar up to the first pairing (tAU/6,,0 =
25) after which differences occur: for example, all lower
T o layers are thinner due to the larger heptane density
(stronger stratification) which impedes entrainment.
The influence of the identity and value of the ther-
mal diffusion factors is very weak for the agx values,
and results in increasing layer growth with increasing
ar i values. More important, at the end of the simula-
tion the ag-prescribed simulations feature a sustained
growth, whereas the agg-prescribed simulations show

a reduced growth implying that additional energy was
removed from the How.

Other aspects of interest pertinent to the 2D shear
layers cannot be presented here due to space con-
straints, however, it is clear that supercritical shear lay-
ers behave differently from subcritical ones. To further
illustrate this difference between sub- and supercriti-
cal behavior, we present in Fig. 3 contour plots of the
spanwise vorticity in a plane between the braids (that
connect adjacent spanwise vortex cores) of the 3D shear
layer (Run 8) at tAUy /6,0 = 100. The spanwise vortic-
ity is often displayed to visualize the large scale rollers
(i.e. the spanwise structures) in mixing layers at low
Ma. Clearly, there is very little positive vorticity that
has been created (all initial spanwise vorticity is nega-
tive due to the initial mean velocity profile), and since
it is the occurrence of this positive spanwise vorticity
that is related to the transition to turbulence, we con-
clude that the transitional regime has not been reached;
in contrast, subcritical 3D shear layers with similar ini-
tial conditions are transitional at tAUp/6,,0 = 100 [14].
This is in agreement with other cited studies of strati-
fied mixing layers showing similar impeded transition to
turbulence. The heptane mass fraction contours plotted
in Fig. 4 (braid plane) and Fig. 5 (between the braids
plane) displays specific nonuniformities that result from
solubility effects of nitrogen into heptane and shows fea-
tures similar to the threads optically identified in (5].
Additionally, the density gradient (not shown due to
space constraints) plotted both in the braid and in be-
tween the braid plane shows concentrated ‘wisp’- like
features similar to the optically identified [5] threads
that break off from a supercritical jet.

Conclusions

A previously developed model of supercritical fluid be-
havior has been here adapted to the configuration of
a shear layer, and Direct Numerical Simulations have
been performed to investigate supercritical fluid en-
trainment and mixing. The results show that due to
the density stratification, the growth of the layer is di-
minished with respect to previously studied subcritical
layers, and that transition to turbulence is suppressed.
Moreover, pretransitional results from 3D simulations
indicate that optically identified entities breaking off
from fluid jets in convective flows may contain a vari-
ety of heptane-nitrogen compositions.
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Fig. 1 Averaged compressibility factor for Runs 1
7 (see Table 3) versus the nondimensional cross strean
coordinate.

tAUGI 8..0

Fig. 2 Nondimensional momentum thickness ver
sus a nondimensional time for Runs 1-7 (see Table 3
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Table 2: Polynomial curve fit coeficients.

L Run Tz_o[[\'] Ny x Ny (x.¥y) [ ST AT TN
1 600 200 x 232 0.1
2 600 200 x 232 1.0
3 600 200 x 232 5.0
4 600 200 x 232 0.1
3 600 200 x 232 1.0 '
6 600 200 x 232 3.0
7 900 200 x 232 0.1
8 600 200 x 232 x 120 | 0.1

Table 3: Simulation parameters. All runs have 4 initial vortices and two pairings, M, = 0.35,
Reg = 400, T} ,0 = 1000K. and py = 6! Pa.
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-0.040
-0.212
-0.385
-0.558
-0.731
-0.904
-1.077
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Fig. 3 Contour plot of the spanwise vorticity in a
plane between the braids for the 3D Run 8 (see Table
3).
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Fig. 4 Heptane mass fraction for the 3D Run 8 in © b 5 Heptane mass fraction for the 3D Run 8 in
a braid plane. a plate hetween the braids.,



